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ABSTRACT

In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds.
These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio
of thermal and magnetic pressures. Observations show that molecular clouds have β <∼ 1, so magnetic
fields have the potential to play a significant role in the accretion process. We have carried out a
numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly
moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving
with sonic Mach numbers of up M ≈ 45, magnetic fields that are either parallel, perpendicular, or
oriented 45◦ to the flow, and β as low as 0.01. Our simulations utilize adaptive mesh refinement in
order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far
from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally,
we show our results are independent of our exact prescription for accreting mass in the sink particle.
We give simple expressions for the steady-state accretion rate as a function of β and M for the parallel
and perpendicular orientations. Using typical molecular cloud values of M ∼ 5 and β ∼ 0.04 from
the literature, our fits suggest a 0.4 M⊙ star accretes ∼ 4 × 10−9 M⊙/year, almost a factor of two
less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of
magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these
accretion rates versus accretion rates expected from gravitational collapse, and under what conditions
a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an
increase in the time required to form stars in competitive accretion models, making such models less
efficient than predicted by Bondi-Hoyle rates. Our results should find application in numerical codes,
enabling accurate subgrid models of sink particles accreting from magnetized media.
Subject headings: ISM: magnetic fields — magnetohydrodynamics (MHD) — stars: formation

1. INTRODUCTION

Accretion is ubiquitous in astrophysics. With examples
including protostellar accretion from molecular clouds,
mass transfer between binary companions, and gas falling
onto a supermassive black hole in the center of galac-
tic nuclei, understanding how (or whether) a gravitating
source gathers mass has received much attention over
the past century. In the case of star formation, consider-
able study has been given to understanding the process
of accretion from a background medium. Knowing how
much mass a star can accrete from its natal cloud will
help elucidate, for example, whether the final mass of
the star is determined primarily through gravitational
collapse (e.g., Shu 1977) or through post-collapse accre-
tion (e.g., Bonnell et al. 1997, 2001). Mass accretion
also could play a role in the dynamics of stars in clus-
ters. If the accretor is moving relative to the background
gas, then the accretion of mass and momentum will be
non-spherical, and this may play a role in the radial re-
distribution of objects in stellar clusters (Lee & Stahler
2011).
Several physical processes exist for transferring mass

from the cloud to the surface of a (proto)star. In core-
collapse models (Shu 1977), a dense core’s self-gravity
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induces global gravitational collapse, resulting in super-
sonic infall either directly onto the stellar surface or into a
surrounding centrifugally supported disk. Material that
ultimately ends up on the star comes from a local gravi-
tationally bound region of the parent molecular cloud. If
the core is not collapsing directly onto the star+disk, or
if the core is exhausted and the star is moving through
the more tenuous regions of the cloud, another accre-
tion mechanism is at play. Here the local gas initially
unbound to the star can be captured and subsequently
accreted. The self-gravity of this local gas is negligible
relative to the gravity of the star itself. Such accretion
is often called Bondi accretion when the star is station-
ary or Bondi-Hoyle(-Lyttleton) accretion when the star
is moving relative to the background gas, named after the
pioneering investigators (Hoyle & Lyttleton 1939; Bondi
& Hoyle 1944; Bondi 1952).
The primary goal of this work is concerned with under-

standing the steady-state mass accretion rate for Bondi-
Hoyle accretion when the background gas is an isother-
mal plasma pervaded by a magnetic field. In particular,
we seek to construct an interpolation formula that re-
produces both known analytic and numerical results as
well as the steady-state accretion rates we will obtain via
numerical simulations. In our work and these previous
works, the effects of stellar winds and outflows are ne-
glected. We begin this study by summarizing some of
the known results in the next section. From there, we
propose new interpolation formulas for the mass accre-
tion rate of magnetized Bondi-Hoyle flow. This function
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will have two free parameters, which we fix by fitting to
numerical simulations. Section 3 discusses our methodol-
ogy and numerical convergence studies of the numerical
code. Section 4 presents the numerical results and the
results of fitting our proposed interpolation formulas to
the simulation data. In Section 5 we discuss the applica-
bility of such steady-state models in regions of star for-
mation. Section 6 concludes this work with a summary
and discussion. How these models can be implemented
in sub-grid and sink particle algorithms is discussed in
Appendix A.

2. MASS ACCRETION RATES

2.1. Known Results

The study of steady-state accretion from an initially
uniform background medium has enjoyed many analyt-
ical and numerical studies. Edgar (2004) gives a nice
pedagogical review of some of the earlier work. Hoyle
& Lyttleton (1939) first solved the problem for a point
particle of mass M∗ moving through a collisionless fluid
at (hypersonic) speed v0. Matter was focused into a van-
ishingly thin wake and accreted through a spindle down-
stream of the accretor. The accretion rate was

ṀHL = 4πr2HLρ0v0 =
4πG2M2

∗ρ0
v30

, (1)

for the far-field mass density ρ0. Associated with v0 is
the characteristic radius

rHL ≡ GM∗

v20
, (2)

which measures the dynamic length scale within which
gravity wins over the inertia of the gas. In the opposite
limit of stationary or subsonic motion, the thermal pres-
sure exceeds the ram pressure of the gas by a factor of
∼ (cs/v0)

2 for sound speed cs. Bondi (1952) analytically
solved the problem for a stationary accretor, arriving at

ṀB = 4πλr2B ρ0cs =
4πλG2M2

∗ρ0
c3s

, (3)

which becomes

= 1.02× 10−6

(

M∗

0.4 M⊙

)2
( n0

104 cm−3

)

(

T

10 K

)−3/2
M⊙

yr
.(4)

Here we have defined the Bondi radius

rB ≡ GM∗

c2s
= 9.0× 1016

(

M∗

0.4 M⊙

)(

T

10 K

)−1

cm .

(5)
In our numerical evaluations, we have normalized the
temperature T to 10 K, the number density n0 to 104

particles per cm3, and masses to the solar mass M⊙.
The mass density is related to the number density by
ρ0 = (2.34×10−24 grams)·n0. The symbol λ is a function
of the adiabatic index γ (λ = exp(3/2)/4 ≈ 1.12 for an
isothermal gas, γ = 1).
Both limits then established, Bondi proposed his ven-

erable Bondi-Hoyle interpolation formula that connects
the stationary and hypersonic regimes:

ṀBH =
4πρ0r

2
Bcs

(1 +M2)3/2
=

ṀB/λ

(1 +M2)3/2
, (6)

where we have introduced the sonic Mach number M ≡
v0/cs. The characteristic velocity for Bondi-Hoyle accre-
tion is

vBH = (c2s + v20)
1/2 , (7)

and the corresponding Bondi-Hoyle radius is

rBH =
GM∗

v2BH

=
rB

1 +M2
. (8)

We will see in Section 4 that magnetic fields reduce the
accretion rate below these values. Furthermore, for the
fiducial values of n0 and T and for M∗ > 0.4M⊙, Bondi
accretion is not in a steady state (Section 5).
We shall express all accretion rates in terms of the

Bondi accretion rate in two equivalent forms. For exam-
ple, the Bondi-Hoyle accretion rate will be written as

ṀBH = φBH · 4πλr2BHρ0vBH = φBH

(

cs
vBH

)3

ṀB . (9)

This first form emphasizes the underlying physical pa-
rameters, and we have introduced a correction factor
φBH = φBH(M), which will be of order unity. The second
form is

ṀBH =

(

cs
vBH,eff

)3

ṀB . (10)

Here, the effective Bondi-Hoyle velocity vBH,eff is an in-
terpolation formula; the rationale for introducing the sec-
ond form will become clear below.
Simulations have shown that Bondi’s interpolation for-

mula (φBH = 1/λ) can be in error by several ten’s of per-
cent (Shima et al. 1985; Ruffert 1994). These authors,
among others, have considered the non-isothermal case
as well and have proposed two-dimensional interpolation
formulas (in M and γ) to match simulation results. Typ-
ically such formulas are monotonically decreasing func-
tions of both M and γ and agree well the simulations.
A complication is that Ruffert (1994, 1996) has shown
that accretion rates do not decrease monotonically as M
increases, but instead increase near M ∼ 1 and then
asymptote to ṀHL. For the isothermal case, we have
found that

φBH =
(1 +M2)3/2[1 + (M/λ)2]1/2

1 +M4
, (11)

corresponding to

MBH ≡ vBH,eff

cs
=

(1 +M4)1/3

[1 + (M/λ)2]1/6
, (12)

and agrees with the numerical results of Ruffert (1996,
for γ = 1.01) and those reported below with a maximum
error of 27%. Observe that φBH → 1 as M → 0 and
φBH → 1/λ for M ≫ 1. This function is plotted in
Figure 1.
Other numerical studies of accretion have studied

the role of additional physics like radiation pressure
(Milosavljević et al. 2009), turbulence (Krumholz et al.
2006), turbulence and magnetic fields in spherically sym-
metric accretion (Shcherbakov 2008), the presence of a
disk (Moeckel & Throop 2009), or thermal instabilities
(Gaspari et al. 2013). Our finding is that Equation (9)
with φBH given by Equation (11) is a reasonable measure
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Fig. 1.— Various numerical parameters φ as a function of Mach
number M and plasma β. Colors refer to different magnitudes of
β, whereas the linestyles differ for different φ. The high M limit is
1/λ. The subplot shows the stationary limit of φABH as a function
of β. This has the same functional form as φAB, defined in the
text, but with different fitting parameters βch and n, which are

determined in §4.2. The asymptotes are
√

2/βch ≈ 0.32 and unity.

of the accretion rate for isothermal Bondi-Hoyle accre-
tion when additional physics do not play an appreciable
role in the dynamics of the gas near the accretor.
One physical effect that could play an important role

in the gas dynamics is a global magnetic field. In star-
forming regions, there is ample evidence that molecular
clouds are pervaded by magnetic fields (Crutcher 1999;
McKee & Ostriker 2007), whose strength (i.e., its abil-
ity to influence dynamics) can be characterized by the
plasma β, the ratio of the thermal pressure to the mag-
netic pressure:

β ≡ ρc2s
B2/8π

= 2

(

cs
vA

)2

= 2

(MA

M

)2

, (13)

for magnetic field amplitude B. We have also introduced
the Alfvén Mach number MA = v0/vA, the ratio of the
gas velocity to the Alfvén velocity, vA = B/

√
4πρ. Ob-

servations of the Zeeman effect, linear polarization emis-
sion of dust, and the Chandrasekhar-Fermi method (see
the review of Crutcher 2012) have suggested molecular
clouds have β values of most order unity, but more have
β < 0.1 (e.g., Crutcher 1999).
Cunningham et al. (2012) have studied accretion from

a magnetized, isothermal, static medium. For the case
in which thermal pressure is negligible (the low-β limit)
they argued that gas would collapse along the field lines
from a distance ∼ rB above and below the point mass,
and would then accrete from ∼ an Alfvén radius,

rA ≡ GM∗

v2A
=

c2s
v2A

rB (14)

at velocity ∼ vA. In our notation,

ṀA = φA · 4πλrBrAρ0vA . (15)

As a result, the accretion rate varies as v−1
A ∝ β1/2,

ṀA = φA

(

cs
vA

)

ṀB = φA

(

β

2

)1/2

ṀB . (16)

Cunningham et al. (2012) expressed the accretion rate as

ṀA =

(

β

βch

)1/2

ṀB , (17)

where βch is a numerical factor; this corresponds to
φA = (2/βch)

1/2. They estimated βch ≈ 5, so that
φA = 0.63. From here, they generalized this to include a
finite temperature (the “Alfvén-Bondi” case). By writ-
ing vA, rA → vAB, rAB in Equation (15), the accretion
rate becomes

ṀAB=φAB · 4πλrBrABρ0vAB = φAB

(

cs
vAB

)

ṀB ,(18)

=

(

cs
vAB,eff

)

ṀB , (19)

where vAB ≡ (c2s + v2A)
1/2 and rAB = GM∗/v

2
AB.

4 The
effective Alfvén-Bondi velocity, vAB,eff , can be chosen to
provide an interpolation formula between the Alfvén and
Bondi cases that agrees best with the numerical simula-
tions; Cunningham et al. (2012) adopted

vAB,eff ≡
[

cns +

(

βch

2

)n/2

vnA

]1/n

=

[

1 +

(

βch

β

)n/2
]1/n

cs ,

(20)
which gives

ṀAB =

[

1 +

(

βch

β

)n/2
]−1/n

ṀB . (21)

They found that n = 0.42 and βch = 5.0 gave agreement
with their numerical results to within 5% for β ≥ 0.01.

2.2. Alfvén-Bondi-Hoyle Accretion

We wish to extend the work of Cunningham et al.
(2012) to the case in which the accreting mass is moving
through a magnetized ambient medium. Our primary
interest is in star-forming regions, which are approxi-
mately isothermal because the dust and the molecules
can efficiently radiate the energy supplied by compres-
sion; we therefore assume that the gas is isothermal.5

The magnetic flux in stars is orders of magnitude less
than that in the gas from which they form, so most of
of the magnetic flux in the accreting gas decouples from
the gas and accumulates in the vicinity of the protostar
(Zhao et al. 2011). As a result, even in cases where the
thermal pressure (∼ ρc2s ) or ram pressure (∼ ρv2) ini-
tially control the dynamics of the gas near the accretor,
accretion can redistribute magnetic flux so that the mag-
netic pressure (∝ B2) eventually dominates the dynamics
near the accreting object. In steady-state Bondi accre-
tion from a magnetized gas, Cunningham et al. (2012)
found that even if β was initially > 1, a steady-state
was reached when the gas within ∼ rAB of the accre-
tor had β ≈ 1. In a steady-state flow where there is
relative motion between the gas and the accretor (i.e.,
magnetized Bondi-Hoyle accretion), we anticipate that

4 Note that Equation (16) of Cunningham et al. (2012) has a
typo, one factor of rAB should be written as rB instead.

5 As we discuss in Section 6, our results should also be applicable
to the central regions of active galactic nuclei.
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if MA ≪ min(1,M), the inertia of the gas will play a
small role in setting the steady-state accretion rate, so
Ṁ will be well approximated by the Alfvén-Bondi result
(Eq. 18). If instead MA ≫ 1, the inertia of the gas is
able to drag away most of the magnetic flux so that the
the magnetic field is not dominant anywhere and the ac-
cretion rate should approach the non-magnetized Bondi-
Hoyle limit. We wish to develop an approximate analytic
expression for the rate of accretion by a point mass mov-
ing at a constant speed through a uniform, isothermal,
magnetized medium by further generalizing the above
known results. Our expression will therefore also include
parameters n and βch, which we can then adjust to best
reproduce the results of our simulations of magnetized
Bondi-Hoyle flow.
We generalize Equation (18) by replacing rB with rBH,

rAB with rABH, and vAB with

vABH ≡ (c2s + v20 + v2A)
1/2 . (22)

Here, and throughout the remainder of the paper, cs is
the isothermal sound speed. With

rABH ≡ GM∗

v2ABH

, (23)

the accretion rate is then

ṀABH=φABH · 4πλrBHrABHρ0vABH

=φABH

(

c3s
v2BHvABH

)

ṀB (24)

=

(

c3s
v2BH,effvABH,eff

)

ṀB. (25)

Equations (24–25) do not take into account the orien-
tation of the flow relative to the ambient magnetic field.
In Section 4.2 below, we find that we need different inter-
polation formulas for the cases where the flow is parallel
and perpendicular to the magnetic field. For the parallel
case, we generalize vAB,eff to vABH,‖,eff with

vABH,‖,eff

cs
=

[

(

vBH,eff

cs

)n

+

(

βch

β

)n/2
]1/n

. (26)

The accretion rate in this case is

Ṁ‖ =
1

M2
BH

{

Mn
BH +

(

βch

β

)n/2
}−1/n

ṀB , (27)

where MBH was defined in Equation (12). Observe that
this expression reduces to Bondi accretion for M =
β−1 → 0, to Bondi-Hoyle accretion if β → ∞, and to
Alfvén-Bondi accretion for M = 0 and arbitrary β. The
factor φABH,‖ in this case is then

φABH,‖ = φ
2/3
BH ·

(

vABH

vABH,‖,eff

)

; (28)

it is also plotted in Figure 1.
For flows perpendicular to the field, we obtain better

agreement with our simulations with the less-intuitive
interpolation

vABH,⊥,eff

cs
≡ max

[

vBH,eff

cs
,
vABH,‖,eff

vBH,eff

]

(29)

in Equation (25). One can readily verify that this has the
correct limits for Bondi, Bondi-Hoyle, and Alfvén-Bondi
accretion. We then obtain

Ṁ⊥ = min







1

M3
BH

,
1

MBH

[

Mn
BH +

(

βch

β

)n/2
]−1/n







ṀB.

(30)
An immediate interesting result of this formulation—
that is born out in our simulations, see §4.2—is for the
particular case of highly supersonic flow with an Alfvén
Mach number >∼ 1, the accretion rate for the perpendic-
ular case reduces to

Ṁ⊥ =
ṀB/λ

M3
= ṀHL (M ≫ 1, MA ≥ 1) , (31)

even when MA ≈ 1.
If the point mass is moving through a medium at an

angle θ with respect to the magnetic field, we approxi-
mate the accretion rate by

Ṁ ≃ Ṁ‖ cos
2 θ + Ṁ⊥ sin2 θ . (32)

Indeed, we confirm for one of our simulations that when
θ = 45◦, the resulting accretion rate is decently approx-
imated by the average of the two limiting rates. If the
orientation changes randomly in time, the proposed av-
erage accretion rate is

Ṁ ≃ 1

2

(

Ṁ‖ + Ṁ⊥

)

. (33)

In order to test our proposed interpolation formulas,
we study the problem of Bondi-Hoyle accretion in a mag-
netized plasma using the RAMSES MHD code (Teyssier
2002) over a range of field strengths and sonic Mach num-
bers relevant for star formation. These simulations em-
ploy the adaptive mesh refinement (AMR) capabilities
of the code to retain high spatial resolution where it is
needed—close to the accreting object—while allowing for
a large computational domain to prevent the boundaries
of the domain from influencing the steady-state flow. As
noted above, we do not consider the effects of stellar
winds or outflows on the accretion rate. The numerical
methodology is described in the next section.

3. NUMERICAL METHODS

Our methods are similar to those described in Cun-
ningham et al. (2012). Here we summarize the meth-
ods, highlighting the significant differences in this work,
present the results of our convergence study, and point to
where the reader can find additional details if interested.
We solve the equations of ideal MHD for an isothermal

gas with a fixed point mass at the origin, particularly
mass conservation,

∂ρ

∂t
+∇ · ρv = −SM (x) , (34)

momentum conservation,

∂ρv

∂t
+∇ · (ρvv) = −∇

(

Pth +
B

2

8π

)

+
B · ∇B

4π
− GM∗ρ

x2
x̂− SM(x) · v , (35)
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the induction equation,

∂B

∂t
−∇× (v ×B) = 0 , (36)

and the equation of state,

Pth = ρc2s . (37)

Here v is the velocity of the gas, x is the position relative
to the sink particle, and B is the magnetic field. Self-
gravity of the gas is neglected. In the code, the point
mass is represented by a fixed sink particle located at
the center of the computational domain. The term SM

allows for mass accretion onto the central point mass if
gas flows into a sphere of radius 4∆x, where ∆x is equal
to the size of the grid cell on the finest AMR level. The
accreted gas’s momentum is also removed from the grid,
though the particle is held stationary at the center of the
domain.6 The sink particle is allowed to accrete mass
but not magnetic flux, and it accretes as much mass in
a timestep ∆t as it can without introducing a new local
maximum in the Alfvén speed amongst the cells located
within a shell with radius r between 4∆x and 6∆x from
the accreting particle. That is,

SM(x) =











1

∆t
max

(

0 , ρ− B

4πv2A,max

)

if |x| < 4∆x

0 otherwise

,

(38)
where vA,max = max(vA(x); 4 ≤ |x|/∆x ≤ 6). The
reader can also see the paragraph containing Equation
(7) of Cunningham et al. (2012) for more details on the
sink particle algorithm.
Since the sink particle accretes mass but not flux, the

cells interior to the sink particle radius decouples the gas
form the field. In reality, non-ideal MHD effects remove
the majority of the accreted gas from the field within the
accretion disk < 100 AU from the star; see equation (48)
of (Li & McKee 1996) or the review of Armitage (2011).
Our sink particles will typically have a radius of ∼ 500
AU, so our treatment of non-ideal MHD effects requires a
sub-grid model; our prescription was given above.7 Fur-
thermore, this also means that gas just interior to the
sink particle radius could be artificially affected by non-
ideal effects. Nonetheless, both the exact prescription for
how gas is removed from the field lines and the size of the
sink particle are unimportant as long as the gas entering
the sink region has accelerated to free-fall. If this has oc-
curred, the in-falling gas has causally disconnected from
the surrounding medium and any artificial prescriptions
cannot alter the far-field gas. We discuss how are results
are independent of the sink particle conditions in more
detail in Section 4.2.
In addition to the very small magnetic flux the star

gains by accretion, the star might also generate its own
field through dynamo action. The fields of newborn stars
are observed with strengths of order kGauss, but the
dipole component of the field falls off as (R∗/R)3, making

6 We note that the absence of the −SM(x) · v term in the equa-
tions of Cunningham et al. (2012) is a typographical mistake.

7 Non-ideal effects can also play a role at larger distance (. 1000
AU) within shocks that originate from the collision of in-falling gas
and the magnetic field that has been freed from accreted material
(Li & McKee 1996).
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L
o
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Fig. 2.— Parameter space to be studied. Black dots represent
models explored in this work, with the two runs with arrows cor-
responding to β = 1030. Red dots are the stationary models of
Cunningham et al. (2012). With this choice of axes, the left verti-
cal axis approximates non-magnetic flow, where the bottom hori-
zontal axis approximates stationary flow. The diagonal line plots
MA = 1, while the horizontal line plots M = 1. Our runs explore
two regions of this parameter space quite well. The region ofM < 1
and MA > 1, not explored by us, was studied by Ruffert (1994,
1996) in his investigations of non-magnetized isothermal Bondi-
Hoyle accretion. Since typical star forming regions have MA ≈ 1
(Crutcher 2012), we also explore two cases with an Alfvén Mach
number of unity.

the stellar field strength a few µGauss at ∼ 10 AU, which
is already smaller than the field in the ISM. Therefore,
we neglect the field generated by the star itself.
For all our integrations, the gas is initially uniform

with density ρ0 and sound speed cs. The magnetic field
is initially set to be uniform in the ẑ−direction with a
magnitude set by β. The speed of the gas is initially set
to v0, which is oriented either parallel or perpendicular
to the B-field, except in one case where we orient v at
an angle of 45 degrees. We explore a parameter space of
β and M. We consider β values of 1030, 102, 10, 1, 0.1,
and 0.01 and sonic Mach numbers that range from 0.014
to 44.7. For a given β, we select our velocities to be
either equal to the Alfvén velocity or -1, -1/2, 1/2, or
1 decade from this value. This gives us a combination
of runs that are both sub and super-sonic as well as
sub and super-Alfvénic. Table 1 tabulates the param-
eter space explored, and Figure 2 shows this parameter
space graphically. The plot identifies four regions of pa-
rameter space, depending on whether M and MA are
greater or less than one. Including the stationary runs of
Cunningham et al. (2012), our runs explore two of these
regions quite well (M,MA > 1 and M,MA < 1). The
empty region (M < 1, MA > 1) is explored by hydrody-
namic models of Bondi-Hoyle flow (Ruffert 1996). The
final region (M > 1, MA < 1) is only explored by one
simulation. Typical star forming regions have MA ≈ 1
(Crutcher 2012), so we also explore two cases with an
Alfvén Mach number of unity.
We carried out our computations using the RAMSES

code (Teyssier 2002), an adaptive-mesh-refinement
(AMR) code with an oct-tree data structure. The com-
putational domain is a three-dimensional Cartesian do-
main with a length of 50 rB in each direction. We dis-
cretize the domain onto a Cartesian base-level grid of
643. Denote this level as level L = 0. We allow for seven
additional levels of refinement (L = 1, 2, ..., 7), with each
level incrementing the grid-cell density by 23 above the
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TABLE 1
Simulation Parameters

β M MA rABH/∆x tend/tB 〈Mfast〉a|| 〈Mfast〉a⊥ (Ṁ/ṀB)|| (Ṁ/ṀB)⊥ (Ṁ/ṀB)45◦

100 0.014 0.1 161 8 1.4 1.7 0.323 0.379
100 1.41 10 54 9 2.2 1.6 0.363 0.332
10 1.41 3.2 51 7 1.4 1.1 0.273 0.294
10 4.47 10 8 4 3.8 3.5 0.012 0.011
1 1.41 1 33 5 1.6 1.0 0.106 0.182 0.116
1 4.47 3.2 7 3 2.1 2.0 0.013 0.012
0.1 0.447 0.1 8 3 1.7 1.5 0.064 0.061
0.1b 4.47 1 16 0.5 1.8 1.1 0.00163 0.0112
0.1c 44.7 10 21 3× 10−4 8.2 8.6 10−5 8.12× 10−6

0.01d 4.47 0.32 2 0.5 1.3 1.00 0.0024 0.0026
∞e 1.41 n/a 55 5 6.7 0.4
∞e 4.47 n/a 8 5 5.5 0.01

a Computed as the volume average over the cells 5 and 6 ∆x from the sink particle. Cells are included if the
gas is in-falling (i.e., if v · x < 0.)
b For this simulation, two additional levels of refinement are allowed for the parallel run, reducing the value of
∆x by a factor of 22. For the perpendicular run, only one additional level is allowed, reducing ∆x by a factor
of 2.
c For this simulation, one additional level of refinement is allowed and each dimension of the computational
domain is reduced from 50 rB to 50/64 rB by a factor of 27, reducing the value of ∆x by a factor of 27+1.
d For this simulation, one additional level of refinement is allowed, reducing the value of ∆x by a factor of 2.
e For these simulations, β is set to 1030 to approximate non-magnetic flow.

previous level. Each grid cell in the domain is initially
refined up to level L if its distance x from the center of
the domain satisfies

(

25

2L+1

)

rB < x <

(

25

2L

)

rB .

That is, initially the grid is a set of concentric spheres
of increasing refinement as the radius decreases. We also
allow for further adaptive refinement if a particular pair
of zones has a steep density gradient: if any component
of (∆x/ρ)∇ρ exceeds 1/2, those cells are refined. In this
evaluation, the ρ in the denominator is the average of
the two cell densities. This second criterion is met only
at later times when transient features develop near the
sink particle.
Seven AMR levels sufficiently resolve the relevant

lengths scales for the majority of our runs. Since our
runs include thermal pressure, gas motion, and mag-
netic fields, we want to ensure not just that the length
scale rAB scale is resolved—as was done in Cunningham
et al. (2012)—but that the Alfvén-Bondi-Hoyle length
scale (Equation 23) is adequately resolved. The maxi-
mum level of refinement provides an effective resolution
of ∆x = 50 rB/(64 · 27 cells) = rB/(164 cells). Table 1
tabulates the value rABH/∆x. All length scales are re-
solved by at least 7 cells on the finest level. We note that
we are allowing one less level of refinement compared to
Cunningham et al. (2012), who allowed up to Lmax = 8.
Even though some runs have the smallest length scale
resolved by ≤ 8 zones, we have confirmed through nu-
merical convergence studies that reducing the number of
AMR levels from Lmax = 8 to Lmax = 7 does not affect
the steady-state accretion rate for several of our runs; see
Figure 3, where the mass accretion rate for several exam-
ples is compared as a function of Lmax. In cases where
increasing Lmax changes the steady state accretion rate
by more than 30%, we include additional levels of refine-
ment until the disparity between simulations diminishes.
The cases (β,M) = (0.1, 44.7) , (0.1,4.47) and
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Fig. 3.— Convergence study for three of our marginally resolved
models. For the β = 1 and 10 models, the dotted, solid, and
dashed lines represent Lmax = 6, 7, and 8. The solid and dashed
represent Lmax = 8, and 9 for the β = 0.01 model. Increasing
the number of levels increases the ratio rABH/∆x. For all of these
runs the velocity and magnetic field are parallel. The sudden jump
for β = 10, Lmax = 6 at t/tB ≈ 0.7 occurs because an instability
develops in the flow that allows magnetic flux to escape from the
region surrounding the sink particle, allowing more mass to accrete.
The β = 0.01 case appears converged even though for eight levels
of refinement, rABH/∆x ∼ 2.

(0.01,4.47) require special treatment. For the first,
rABH ≈ rBH ≈ rB/2000 is not adequately resolved by
even one cell at the finest level of refinement with our
standard procedure. Furthermore this implies the sink
particle—having a radius of four times the finest grid
cell—exceeds the smallest length scale and thus no longer
approximates a point particle. Since rBH is orders of
magnitude smaller than the other two length scales—and
consequently the ratio of pressures Pram/PB ≈ 200—we
expect the inertia of the gas to dominate the dynamics,
so the time for the flow to reach a steady state should be
of order tABH ≈ tBH = rBH/v0 = tB/M3 ≪ tB = rB/cs.
Unperturbed fluid traverses only a small part of the com-
putational domain in the time required for the flow to
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achieve steady-state. In order to adequately resolve the
Bondi-Hoyle length scale in this case, we reduce the size
of the box by a factor of 27, making the length of the
domain ≈ 780 rBH. We also allow one additional level of
refinement, making the finest level of refinement smaller
by an additional factor of 2 so that rBH/∆x ≈ 21. A
steady state is reached in a few tBH, so we need not
worry about boundary conditions affecting the state of
the flow near the accretor.
For the cases of (β,M) = (0.1, 4.47), and (0.01, 4.47),

rABH/∆x ≈ 4 and 1, respectively, when Lmax = 7. A
convergence study showed that, for the parallel orienta-
tion, two additional levels were required for the former
case and one for the latter. Convergence is achieved in
the latter case even though the ABH length, rABH, is re-
solved by only about 2 zones. The former required more
levels because MA = 1, and we find that the accretion
rates for these cases are most sensitive to the flow mor-
phology ∼ rABH from the accretor, and thus require the
most resolution at these scales (see Figure 3). For the
perpendicular orientations, only one additional level was
required to show convergence.
All quantities are computed in the cell centers, except

for the magnetic field, which is computed on the cell
faces. The magnitude of a particular cell’s magnetic field
is then the average of the magnitude of the cell faces.
We set ρ0 = 10−8(M∗/r

3
B) in all our simulations. The

total mass of the gas is then (50 rB)
3ρ0 ≈ 10−3M∗ ≪ M∗,

justifying our neglect of the gas’s self gravity. Integra-
tions are run to a final time tend sufficiently long to attain
a statistically steady accretion rate onto the central par-
ticle. Using a stellar mass ofM⊙ with T = 10 Kelvin gas,
rB ∼ 22, 000 AU. For our default resolution with seven
levels of refinement, the finest level has a resolution of
∼ 135 AU, and the radius of the sink particle is 540 AU.
For the Mach 44.7 run where the box size is reduced, the
radius of the sink particle is ∼ 2 AU. For this run only,
the stellar field could influence the gas surrounding the
sink particle. However, given the high momentum of the
gas (MA = 10), this run will mimic non-magnetic hy-
drodynamic flow where additional non-ideal effects play
little-to-no role in setting the final accretion rate.

4. RESULTS

4.1. Morphology

All of our subsonic runs are also sub-Alfvénic, making
the gas morphologies and the final accretion rates well
approximated by the stationary models of Cunningham
et al. (2012). In this section we describe the supersonic
cases, particularly the M = 1.41 and M = 4.47 runs.
Figures 4 and 5 show snapshots late in the simulations

after a steady state accretion rate has been established.
These two-dimensional slices through the center of the
computational domain show the gas density (color bar),
velocity of the gas (arrows), and magnetic flux direction
(lines) for β ≥ 0.1 and M = 1.41 and 4.47. Figure 6
takes the M = 1.41 and β = 1 runs and plots the local
values of M, β, MA, and B2 at the same late time.
The general evolution of the runs goes as follows. Ini-

tially, gravity pulls nearby gas towards the sink particle,
pinching the magnetic field perpendicular to the far-field
flow direction for the parallel orientation, and parallel
to the flow for the perpendicular orientation. Gas flows

Fig. 4.— Slices in the x−z plane showing the region near the sink
particle for the parallel orientations. The left and right columns
have M = 1.41 and 4.47, respectively. From top to bottom, the
rows show β = 0.1, 1, 10 and 100. All plots are shown at t = 3tB
except the β = 0.1 plot, which is at 0.5tB. The color map indicates
log10(ρ/ρ0), green lines represent magnetic flux tubes drawn from
equidistant foot-points 0.5rB upstream of the sink particle, and
white arrows represent the flow pattern in the plane of the slice.
The black circle indicates the size of the sink particle, equal to
4∆x.

relatively undisturbed until it hits the developing shock
at the Mach cone or, in some cases, a bowshock prop-
agating upstream. These shocks retard the gas to sub-
magnetosonic velocities, and the gas continues to flow
along field lines downstream of the shocks. Near the
source, field lines are drawn towards the sink particle,
creating a network of pathways for gas to flow onto the
accretor. The extent which field lines can be dragged
toward the source depends on the values of M and MA;
stronger fields are more resistant to bending (compare,
for example, field lines downstream of the shocked region
for the M = 1.41 parallel runs in the left panel of Fig-
ure 4). Mass-loaded field lines that reach the sink are
relieved of their gas, eliminating the gravitational force
pulling holding them at the sink. Like a released bow-
string, the field snaps back into the surrounding gas (this
is prominently shown in the perpendicular orientation for
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Fig. 5.— Same as Figure 4 but for perpendicular orientations.

M = 1.41 and β = 1 in Figure 5; here the downstream
field lines were recently released). While the mass accre-
tion rate reaches an approximate steady state, the mor-
phology of the flow shows larger fluctuations. The details
of this morphology depend on the initial orientation of
the field to the flow, which we now consider in turn.

4.1.1. Parallel Orientations

In the parallel case, there are two types of shock: hy-
drodynamic, in which B is unaffected, and switch-on
shocks, in which a perpendicular component of the field
appears behind the shock front (Draine & McKee 1993).
The conditions for the occurrence of a switch-on shock
are (1) MA > 1: (2) vA > cs, corresponding to β < 2;
and (3) the post-shock flow must be less than vA cos θ2,
where the subscript 2 denotes post-shock quantities and
θ is the angle between the magnetic field and the flow
velocity. The first two requirements ensure that the
shock velocity exceeds the fast-wave velocity vF , which
is max(vA, cs) = vA in this case. The third, post-shock
requirement translates to an upper bound on the pre-
shock velocity. For isothermal gas (γ = 1), as in our

simulations, this upper bound is infinite (Draine & Mc-
Kee 1993).
Gravity amplifies ρ and B relative to the background

values ρ0 and B0, but primarily inside rABH. Elsewhere,
shocks can also produce density and/or field enhance-
ments. For the parallel orientations, a Mach cone devel-
ops immediately for all the supersonic runs and typically
extends far beyond rABH. This is the enhanced density
region surrounding and downstream from the accretor in
Figure 4. At the later times shown in this Figure, the
Mach cone may have joined onto shocks propagating up-
stream of the accretor, which also may end up disturbing
the Mach cone’s shape (e.g., theM = 1.41 runs in Figure
4). In the case of M = 4.47 and β = 0.1, the Mach cone
shock front is located only close downstream from the
accretor. Here, the unshocked, low-β, fast-moving gas
drags the shocked gas downstream along field lines rather
than allowing the Mach cone to extend at the same open-
ing angle. Upstream shocks develops for all M = 1.41
runs, either immediately when β = 1 (MA = 1) or at
later times for β > 1. Figure 7 plots the shock front lo-
cation as a function of time for β = 1 and M = 1.41. A
least-squares fit to an exponential function suggests the
shock will vanish at ∼ 3rABH, where MA drops to unity.
As noted above, switch-on shocks occur only for β < 2.

Our simulations show that perpendicular field compo-
nents can develop in the flow at a finite distance down-
stream of the shock; of course, if the shock is not ex-
actly parallel, then the upstream perpendicular compo-
nent of the field can be amplified by the compression in
the shock. In either case, the perpendicular field compo-
nent causes material to pile up on one side of the sink
particle, and the inertia of the gas drives kinks in the field
farther downstream from the shock (see the left side of
Figure 4). As the field piles up, magnetic pressure even-
tually dominates and the field straightens itself out, but
overshoots, collecting on the opposite side of the accre-
tor. The resulting morphology upstream is an oscillating
motion of the field and the flow with a period of ∼ tB.
Material not immediately upstream of the accretor

flows into the Mach cone and then primarily travels
through the region immediately downstream of the shock
towards the sink particle. However, we note that for
these particular simulations, the region of reduced B
along the Mach cone is most likely due to numerical re-
connection because the field flips orientation over a few
grid cells; we have not carried out higher resolution simu-
lations to test if this structure is converged. However, we
have ensured that the mass accretion rate is converged, as
discussed in the next subsection. The Mach cone results
in the downstream being less dense than the background,
rather than material forming a downstream wake as in
the hydrodynamic limit.
For M = 4.47, the bowshock only forms for β = 0.01.

Even though β = 0.1 gives MA = 1 initially, the re-
gion interior to rABH is so close to the accretor that any
decrease with β also occurs with an increase in M, re-
sulting in MA < 1 never being satisfied. For larger β,
even less field enhancement occurs upstream. As a re-
sult, the M = 4.47 runs resemble non-magnetic flows,
with a downstream “wake” forming as the region of gas
shocked from the Mach cone. The majority of the mass
accretion occurs through this wake.
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Fig. 6.— Characteristic flow quantities for M = 1.41, β = 1
at t = 3tB. The left and right columns shown the parallel and
perpendicular orientations. The top row shows M, the second row
shows β, the third row shows MA, and the bottom row shows
(B/B0)2. The colormaps are in log10 space, where the axes are
linear (with units of rB). The black circle indicates the size of the
sink particle, equal to 4∆x.

4.1.2. Perpendicular Orientations

For the perpendicular orientation, shocks occur if the
flow velocity exceeds vF , which is (v2A + c2s )

1/2 = cs(1 +

2/β)1/2 in this case. Even if this condition is not ini-
tially satisfied, a magnetosonic wave launched from the
sink particle boundary can steepen into a weak shock as
it moves upstream from the sink particle. We see this,
for example, in the M = 1.41, β = 1 case. Initially
vF = (3/2)1/2v0. Immediately upstream of the shock,
both ρ and B are increased from compression, but ρ has
increased even further from material falling down field
lines. This results in an increased β and reduced vF .
Figure 7 plots this front location. Since β has increased
to ∼ 1.2, the wave (which has steepened into a weak
shock) moves at a speed ∼ (1+2/1.2)1/2cs− v0 ∼ 0.22cs
upstream, relative to the accretor. Perpendicular to the
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Fig. 7.— Location of the shock front along the upstream axis. To
provide data for a fit, the location is plotted at t/tB = 0.2, 0.5, and
then every 0.5 tB until 3 tB, when the simulations end. The parallel
orientation is plotted with circles, perpendicular triangles. A least-
squares fit to the function shown is performed. The parallel shock
velocity tends to zero at ∼ 3 rABH, where the flow is unchanged
from the background flow. For the perpendicular case, the shock
maintains a nearly constant speed equal to the local magnetofast
velocity.

flow, a weak shock moves outward at ∼ vF .
The M = 1.41 runs all show the development of a

dense irrotational disk around the accretor interior to
∼ 0.25rB, with the disk normal perpendicular to the in-
coming flow. For β = 1 and 10, this disk attaches to a
downstream wake. In the β = 100 case, colliding flows
have made the inner ∼ 0.25rB flow unstable, similar to
the oscillating flow we saw in the parallel cases. The weak
field ends up draped around the shocks that form around
the sink particle. ForM = 4.47, again the flow resembles
the non-magnetic case. No bowshock is launched except
in the β = 0.1 case, but, as discussed above, this is a
transient of the flow.
We also perform one run at β = 1, M = 1.41 with

a 45-degree angle between the flow and magnetic field.
Within ∼ rABH, the flow tends to align itself with the
local magnetic field, and the general flow resembles that
of the parallel orientation. The remaining runs, with
M = 44.7 and β = 0.1 or with M = 1.41, 4.47 and β =
1030, are dynamically dominated by the ram pressure
of the gas and therefore closely resemble non-magnetic
hydrodynamic flow.

4.2. Mass Accretion Rate

For each simulation, the mass accretion rate, Ṁ , rises
with time and then levels off after a few tB = rB/cs. Each
simulation is run until the rate plateaus for a least a few
tABH. The rate quoted in Table 1 is the average over the
last 1/6 of the integration, following Cunningham et al.
(2012).

Figure 8 gives an example of the time evolution of Ṁ
for the β = 1 runs. The rate is averaged over 0.2tB bins
to reduce noise. In general, when M < 1 or MA ≫ 1,
the orientation of the field makes little difference in the
final accretion rate despite the very different morpholo-
gies. When MA ≈ 1, the perpendicular rate always ex-
ceeds the parallel rate. When M ≫ 1, ṀHL well ap-
proximates the perpendicular accretion rate, even, sur-
prisingly, when MA ≈ 1.
In the high β (≥ 100) subsonic runs of both our work

and that of Cunningham et al. (2012), the accretor un-
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Fig. 8.— Mass accretion rates as a function of time and field
orientation for β = 1.0. All rates are normalized to the Bondi
accretion rate (Equation 3). The short (red) lines identify the
steady-state Bondi-Hoyle accretion rates (Equation 9).

dergoes a period of rapid accretion before the accretion
rate suddenly drops to ∼ 1/2 of the original value (see
Figure 6, right panel of Cunningham et al. 2012). The
reason for this effect is that the magnetic field eventu-
ally becomes dynamically dominant after enough flux has
built up near the accretor. Cunningham et al. (2012)
showed that this occurs after t >∼ (β/100)1/2tB for a dy-
namically weak field and could take an arbitrarily long
time as β → ∞. We note that we do not see this effect
for our M = 1.41 run with β = 100. In this case, the
magnetic flux is unable to appreciably build up within
rABH ∼ rB/4 before the gas pulls the flux downstream.
Below, when we determine the best fit parameters for our
interpolation formulas, we use the initial (larger) steady-
state value for the mass accretion rate since in astrophys-
ical applications the flow is often not steady for long time
periods.
Two requirements are needed to ensure that the accre-

tion rate has converged. First, the value of Ṁ should
not depend on the resolution of the grid. As explained
in §3, we have verified that this is the case. Increasing
the resolution also decreases the size of our sink particle,
which has a radius of 4∆x. The second requirement is to
ensure that the sink particle boundary conditions cannot
influence the value of Ṁ . To do this, we require that the
accreting gas pass through the fast magnetosonic point
at r > 4∆x, so that it becomes causally disconnected
from the ambient medium before encountering the sink
region. For each run, we calculate the mass-weighted
volume average of MF = v/vF for the cells either 5 or
6 ∆x from the sink particle. Recall that gas is removed
from flux tubes inside the sink region. The resulting low-
density flux tubes are interchange unstable and will rise
away from the accretor. Since we are interested in verify-
ing that the accreting gas is causally disconnected from
the ambient medium, we include only accreting gas (i.e.,
gas from cells where v · x < 0, where x is the position
vector from the sink particle’s center) in calculating the
average of MF . This averaged value is given in Table 1.
For all our runs, we confirm that we have captured the
transition.
With the simulation data, we can now determine βch

and n in our proposed interpolation formulas (Equations
27 and 30) from Section 2.2 . Recall that these formu-

las generalized and built upon previous known analytic
and numerical results. In particular, we have proposed
a simple interpolation formula for the Bondi-Hoyle limit
(Equation 9), which matches the simulation results of
Ruffert (1996). We performed two β = 1030 runs to ver-
ify this equation, finding it underestimates the true ac-
cretion rate by only 19% and 3% for M = 1.41, 4.47, re-
spectively. The mass accretion rate for the diagonal case
lies between the the parallel and perpendicular rates; the
average of the predicted parallel and perpendicular rates
(Equation 33) reproduces this diagonal case to 18%.
We perform a least-squares fit to Equations (27) and

(30) using the union of data from this work and from
Cunningham et al. (2012). Since the values of the accre-
tion rate can vary over orders of magnitude, we define the
residuals in the least-squares function to be the difference
of the logarithms rather than of the absolute values:

S =
∑

(log10 Ṁdata − log10 Ṁfit)
2 . (39)

Each data point is given an equal statistical weighting.
Minimizing S, we find βch = 18.3±0.004 and n = 0.94±
0.15 with S = 0.956. We do not include the diagonal run
or the two hydro runs in our fit.
The standard errors show that matching the data to

these interpolation formulas is not terribly sensitive to
the exact value of n. Since the data are consistent with
using n = 1, we adopt this value for simplicity. Fixing
n = 1, a least-squares fit to the data yields βch = 19.8±
0.006 with S = 0.96. We fix βch as 19.8.
In Section 2.2 we wrote all accretion rates in terms of

ṀB, which is constant across our entire parameter space.
Since we are studying gas initially in uniform motion,
normalizing to ṀBH (Equation 10) is also useful. Indeed
with this normalization, our parallel accretion rate can
be written in terms of one parameter

MBHβ
1/2 = 21/2MBH

(

cs
vA

)

, (40)

which varies as B−1 if the other parameters are held
constant (MBH is defined in Equation 12; recall that
MBH → 1 as M → 0). Equations (27) and (30) can be
rewritten as

Ṁ‖

ṀBH

=

[

1 +
4.4

(MBHβ1/2)

]−1

, (41)

Ṁ⊥

ṀBH

=min

{

1 , MBH

[

1 +
4.4

(MBHβ1/2)

]−1
}

.(42)

The perpendicular rate, however, potentially requires
knowledge of both MBH and β individually. Figures 9
and 10 plot these fits for the parallel and perpendicular
orientations. These fits are able to reproduce the simu-
lation data to within a factor of three.
For typical molecular cloud values of M ∼ 5 and

β ∼ 0.04 (Crutcher 1999), which corresponds to MA =
0.71, MBH = 5.15, and MBHβ

1/2 = 1.03, Equation
(33) gives an accretion rate of 4.2 × 10−3 ṀB. For the
fiducial parameters given in Equation (4), this corre-
sponds to 4.3× 10−9 M⊙ yr−1, which is not that differ-
ent from the hydrodynamical prediction (Equation 10) of

ṀBH = 6.9× 10−9 M⊙ yr−1. However, for smaller Mach
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Fig. 9.— Steady-state mass accretion rates for the parallel ori-
entations as a function of the plasma beta β (horizontal axis)
and sonic Mach number M (symbols). Here we have defined
MBH = vBH,eff/cs. All accretion rates are normalized to our
Bondi-Hoyle accretion rate (Equation 9). The solid line is our best

fit Ṁ‖ with βch = 19.8 and n = 1.0 (Equation 27 or 41). Subsonic
runs with β ≥ 100 are plotted with their second steady-state value.
The dashed lines connect these points to their initial steady state
values (no data point shown).
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Fig. 10.— Steady-state mass accretion rates for the perpendicular
orientations as a function of the plasma beta β (horizontal axis)
and sonic Mach number M (symbols). All accretion rates are
normalized to our Bondi-Hoyle accretion rate (Equation 9). The

lines are our best fit Ṁ⊥ with βch = 19.8 and n = 1.0 (Equation
30 or 42) for four values of M: solid M = 0; dashed M = 1.41;
dot-dashed M = 4.47; and dotted M = 44.7. Subsonic runs with
β ≥ 100 are plotted with their second steady state value. The
dashed lines connect these points to their initial steady state values
(no data point shown).

numbers of ∼ 2 and 0, the ratio of the predicted average
accretion rate to the hydrodynamic value decreases to
0.19 and 0.048, respectively. Figure 11 plots our parallel
and perpendicular fits, normalizing to ṀB (Equation 3).
Here the disparity between the perpendicular and paral-
lel fits can be seen, especially when MA < 1. We remind
the reader that our runs only have one instance where
MA < 1 and M > 1: β = 0.01 and M = 4.47, and we
found little difference between the parallel and perpen-
dicular rates, whereas the fits predict the perpendicular
rate should be 4.6 times the parallel rate. However, this
region of parameter space is only a small region of the
overall parameter space (Figure 2) and our fits do pre-
dict the disparity between the parallel and perpendicular
rates in the other three regions, as well as when MA = 1.
Since we chose our non-magnetized limit to well repro-

0 2 4 6 8 10
Mach Number      M

−4

−3

−2

−1

0

L
o
g
10
(Ṁ
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Fig. 11.—Mass accretion rate as a function of sonic Mach number
(x-axis) and plasma β. From top to bottom, the curves represent
decreasing β values. The solid curves show the parallel fit while the
dashed curves show the perpendicular fit (Equations 27 and 30).
The right y-axis uses the fiducial parameters given in Equation
(3) M∗ = 0.4M⊙ yr−1, n0 = 104 cm−3 and T = 10 K. The
points identify where MA = 1. The fits are identical at low Mach
numbers, and the perpendicular rate always equals or exceeds the
parallel rate. Once MBH,eff > MABH,eff/MBH,eff (Equation 30),
the perpendicular fit becomes identical to the hydrodynamic fit,
which is well-approximated by the β = 100 curves.

duce the results of Ruffert (1996), our fits also succeed in
predicting the accretion rates for M < 1 and MA > 1,
even though we performed no runs ourselves in this re-
gion of parameter space.

5. VALIDITY OF THE STEADY-STATE APPROXIMATION

In both this work and that of Cunningham et al.
(2012), we have made several approximations in our anal-
ysis of Bondi- and Bondi-Hoyle-type accretion: (1) the
accretion must be in a steady-state (at least when av-
eraged over times ∼ tB = rB/cs); (2) the accreting gas
must not be self-gravitating; and (3) the accretion rate
must be determined by the mass of the particle, not by
the gravitational collapse of the ambient medium. As
we shall see, these approximations are all connected. We
have also assumed that the ambient medium is uniform
and that the particle is small compared to rABH, but we
shall not discuss these approximations here. To keep our
discussion simple, we restrict ourselves to Bondi accre-
tion.
We define the Bondi mass as

MB ≡ 4πρ0r
3
B , (43)

so that the Bondi accretion rate is

ṀB ≃ MB

tB
, (44)

where the approximation consists of setting λ ≃ 1. The
Bondi mass is the mass of gas located within the Bondi
radius of the particle and is approximately the mass ac-
creted within one Bondi time. For steady-state accretion,
the mass of the particle must change slowly, i.e., the mass
accreted in one Bondi time must be small compared to
the particle mass: ṀBtB ≪ M∗. Therefore, the steady-
state approximation reads

MB

M∗
≃ ṀBtB

M∗
≪ 1 . (45)

The self-gravity of the ambient gas is characterized by
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the gravitational mass,

MG ≡ c3s
√

G3ρ0
; (46)

the Bonnor-Ebert mass, the maximum mass of an
isothermal sphere in hydrostatic equilibrium, is 1.182MG

(Ebert 1955; Bonnor 1956). We then have the identity

MBM
2
G = 4πM3

∗ , (47)

which implies

MB

MG
=

1√
4π

(

MB

M∗

)3/2

≪ 1 (48)

(Equation 45). The condition for the accreting gas to
be non-self-gravitating is that the mass inside the Bondi
radius be small compared to the gravitational mass,
MB ≪ MG. Equation (48) then implies that Bondi ac-
cretion is in a steady state if and only if the accreting
gas is not self gravitating.8 In other words, the first two
approximations listed at the start of this section are re-
ally only one approximation. The steady-state approxi-
mation, together with the identity (47), place an upper
bound on the particle mass,

√
4π

M∗

MG
=

(

MB

M∗

)1/2

≪ 1 , (49)

so that

M∗ ≪ 0.36

(

T

10K

)3/2(
104 cm−3

n0

)1/2

M⊙ , (50)

where n0 is the density of hydrogen nuclei in the am-
bient gas. The right-hand side of Equation (50) is just
MG/

√
(4π). If M∗

>∼ MG/
√
(4π), the gas mass within

rB is massive enough to be self-gravitating, and there-
fore the mass of the particle will not change slowly. For
example, if M∗ = 1.0M⊙, then for the fiducial parame-
ters above, MB ≈ 2.5 M⊙, which exceeds MG ≈ 1.3 M⊙:
The fact that MB exceeds MG means that the gas is
self-gravitating, and the fact that MB exceeds M∗ means
that that accretion is not in a steady state. Note that
Equation (50) is based on the assumption that turbu-
lence inside rB is negligible; if turbulence is important
on that scale, as it may be in regions of high-mass star
formation, then the theory presented here would have to
be generalized, as it was for the non-magnetic case by
Krumholz et al. (2006).
Finally, we compare the accretion rate due to gravita-

tional collapse,

ṀG ∼ c3s
G

, (51)

(Shu 1977) with that due to Bondi accretion. Observe
that the mass accreted due to gravitational collapse in
one Bondi time is very large, ṀGtB ∼ M∗, so that

ṀG

ṀB

∼ M∗

MB
≫ 1 , (52)

8 Lee & Stahler (2011) also showed that a steady state is realiz-
able for Bondi-Hoyle accretion when the gas is not self-gravitating.
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Fig. 12.— Method of accretion as a function of the stellar mass
M∗ and the host core’s mass Mc. The core is stable against its
own self gravity if its mass is less than MG (Equation 46). The
gas interior to radius rB is not self gravitating if this gas mass
MB is less than M∗ (or equivalently, M∗ < MG/

√
4π). If both of

these relations are satisfied, steady-state Bondi accretion occurs.
Once the stellar mass grows so that MB

>∼ M∗, the accreted mass is
comparable to M∗ and this accretion rate becomes time dependent.
Regardless, if the core is collapsing via its own self-gravity, accre-
tion occurs by gravitational collapse and a steady state is never
realized.

for steady Bondi accretion. We therefore have the ap-
parently paradoxical result that the rate of accretion via
gravitational collapse greatly exceeds that due to Bondi
accretion when the latter is in steady state (MB ≪ M∗).
There are then two possibilities for normal Bondi ac-
cretion: First, the cloud in which the accreting parti-
cle is embedded could be gravitationally stable, making
ṀG not meaningful (for the simple isothermal, unmag-
netized case we are considering, that requires that the
cloud mass, Mc, be less than MG). Second, gravitational
collapse could occur on a large scale, but not be focused
on the accreting particle. A real molecular cloud is tur-
bulent and inhomogeneous, and it can undergo gravita-
tional contraction without having mass accumulate at a
central point. Our analysis is valid provided the cloud
is approximately uniform within a Bondi radius of the
accreting particle.
In summary, Bondi-type accretion is in steady state if

and only if the gas inside the Bondi radius is not self-
gravitating,

Steady state ↔ MB ≪ M∗ ≪ MG . (53)

Figure 12 shows this schematically. The steady-state
condition places an upper limit on the particle mass,
M∗ ≪ MG/

√
(4π) (see Equation 50).

This discussion is directly relevant to the issue of
whether stars form by gravitational collapse or compet-
itive accretion (Bonnell et al. 2001; Krumholz & McKee
2008). The isothermal sound speed, cs, must be replaced
by the one-dimensional velocity dispersion, σ, in both
MG (McKee & Ostriker 2007) and MB (Krumholz et al.
2006). In order for competitive accretion to dominate,

one requires ṀB ≫ ṀG, and according to Equation (52)
this implies MB ≫ M∗: The accreting gas must be self-
gravitating, the accretion is not in a steady state, and
the upper limit on the protostellar mass in Equation
(50) does not apply. However, Equation (47) then im-
plies that MG ≪ M∗. Since M∗ is less than the mass
of the cloud from which it is accreting, Mc, it follows
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that MG ≪ Mc: the cloud is very sub-virial. That is,
the ratio of the kinetic energy in the cloud to the grav-
itational energy, which is of order the virial parameter
αvir ≡ 5σ2R/GMc, is much less than unity. Krumholz
& McKee (2008) argued that since molecular clouds ap-
pear to have virial parameters of order unity, this implies
that stars form by gravitational collapse, not competitive
accretion. If the observed virial parameter reflects col-
lapse instead of turbulence, then competitive accretion
may be viable, but the accretion rates would be reduced
by magnetic fields.

6. SUMMARY AND DISCUSSION

The accretion of gas onto an object due to its gravity is
generally referred to as Bondi accretion when the object
is stationary and Bondi-Hoyle accretion when the object
is moving. Such accretion has been employed in many ob-
servational, theoretical, and numerical studies to explain
the growth of planets, brown dwarfs, stars, compact ob-
jects, and supermassive black holes, to name a few (e.g.,
Hopkins et al. 2006; Kokubo & Ida 2012; Andre et al.
2012; Toropina et al. 2012). Here we have determined the
effects of a uniform magnetic field on Bondi-Hoyle accre-
tion under the assumption that the gas is isothermal and
that the accreting mass is a point particle, thereby gener-
alizing the results of Cunningham et al. (2012) to include
the effects of the motion of the accretor. In keeping with
most previous treatments of Bondi and Bondi-Hoyle ac-
cretion, we did not consider the effects of stellar winds
and outflows on the steady-state accretion rate.
Our primary application is to protostellar accretion,

but our results should apply to stellar accretion in any
medium in which the gas is approximately isothermal.
We have not considered the effects of stellar winds, which
in some cases are strong enough to suppress accretion.
Our results might also be applicable to accretion onto
supermassive black holes in active galactic nuclei. There
the Bondi radius is rB ≃ 3(M/108M⊙)(10

7 K/T ) pc.
Compton heating and cooling can maintain isothermality
near the Bondi radius if the luminosity is sufficiently high
(Woods et al. 1996). In some cases, Compton-heated
gas is thermally unstable, and Gaspari et al. (2013) have
shown that then Bondi accretion rates based on the tem-
perature of the hot gas can underestimate the true ac-
cretion rate by up to two orders of magnitude.
The time-averaged mass-accretion rate for isothermal

accretion flow onto a static point mass of mass M∗ was
determined by Bondi (1952), ṀB = 4πλρ0rB

2cs, where
λ is a numerical constant, ρ0 is the ambient density,
rB = GM∗/c

2
s is the Bondi radius, and cs is the isother-

mal sound speed. If the object is moving, then the
morphology of the accretion flow and the accretion rate
also depend on the sonic Mach number, M = v0/cs,
where v0 is the velocity of the mass through the am-
bient medium. If the medium is magnetized, two ad-
ditional parameters enter, the plasma β = 8πρ0c

2
s/B

2
0

and θ, the angle between the the field and the velocity
of the object relative to the medium. (For moving ob-
jects, β can be replaced by the Alfvén Mach number,
MA = v0/vA,0 = (β/2)1/2M, where vA,0 is the Alfvén
velocity in the ambient medium). When both M and
MA are large, the accretion resembles non-magnetized
Bondi-Hoyle flow. When either M or MA is small, the
ambient medium is approximately static and the flow re-

sembles the stationary magnetized models of Cunning-
ham et al. (2012). Here we have explored the case
in which both magnetic fields and motion of the mass
through the medium are important by performing three-
dimensional simulations of a gravitating point particle
accreting from an initially uniform, isothermal gas per-
vaded by a uniform magnetic field that is either paral-
lel or perpendicular to the direction of motion. Since
the magnetic flux in stars is small compared to that in
the gas from which the stars formed, we assume that
only gas, not magnetic flux, accretes onto the point mass
(discussed in §3). Our main results are approximate ex-
pressions (27) and (30) for the accretion rates, which
reduce to known numerical and analytic limits and agree
with our simulation data and that of Cunningham et al.
(2012) to within a factor of three (see Figures 9 and 10).
The key assumption underlying the theory of Bondi-

Hoyle accretion is that the gas is not self-gravitating on
the scale of the Bondi radius or, equivalently (as shown in
Section 5) that the accretion rate is steady after averag-
ing over the fluctuations that occur on time scales <∼ tB.
This assumption must be validated for each astrophysi-
cal situation that employs it. The conditions for the va-
lidity of the steady-state assumption are that the stellar
mass be larger than the Bondi mass, MB = 4πρ0rB

3, but
smaller than MG, the mass at which self-gravity becomes
important, so that MB ≪ M∗ ≪ MG (Equation 53). For
the simple case we considered in Section 5, in which mag-
netic fields are negligible (and, as is true throughout this
paper, turbulence is also negligible), the steady-state as-
sumption is valid for stars less than ∼ 0.4M⊙ for fiducial
molecular cloud parameters (Equation 50).
Sub-grid particle accretion methods have been em-

ployed to model protostellar accretion in large-scale nu-
merical simulations of molecular clouds. Our results
should be of particular utility for extending the sub-grid
accretion models in such codes. Previous work has used
unmagnetized accretion rates even though the sink parti-
cles were moving through a magnetized medium, thereby
overestimating the true accretion rate onto the particle.
We outline our implementation of Equations (27) and
(30) in ORION2 sink particles in Appendix A and demon-
strate that this implementation succeeds in reproducing
the correct accretion rate even when the accretion length
scale ∼ rABH is not well resolved (Figure 15). However,
it should be noted that our accretion rates apply to gas
that is not turbulent, and so they do not include the re-
duction associated with vorticity (Krumholz et al. 2005).
Finally, our results have implications for the theory of

star formation. At present, there are two main paradigms
for the formation of massive stars: gravitational collapse,
in which stars form via the gravitational collapse of a pre-
existing protostellar core (McKee & Tan 2003), and com-
petitive accretion, where protostars compete for gas from
a common reservoir initially unbound to the stars (Zin-
necker 1982; Bonnell et al. 1997, 2001). Our study shows
that magnetic fields make competitive accretion scenar-
ios for the growth of pre-main sequence stars less effi-
cient than predicted from Bondi-Hoyle accretion rates.
For example, the amount of suppression for a cloud with
average values of β ∼ 0.04 (Crutcher 1999) and M ∼ 1/2
(Bonnell et al. 2001) is a factor of ∼ 20 (Figures 9 and
10). This reduction increases for lower β and M. Mod-
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els that employ Bondi accretion to transform molecular
clouds into stars (e.g., Murray & Chang 2012) may be
underestimating the timescale for the buildup of mas-
sive stars, and therefore, assuming these massive stars
are what eventually destroy the cloud, are underestimat-
ing the lifetime of the molecular clouds in these models.
Delayed buildup from magnetic fields would predict that
these models have molecular clouds that persist beyond
their typically observed lifetimes. In case of direct sim-
ulations, as long as the Alfvén-Bondi-Hoyle radius is re-
solved and the flow transitions to super-Alfvénic speeds,
the accretion rates obtained will still be correct regard-
less of the subgrid model (e.g, Price et al. 2012, also see
the Appendix).
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APPENDIX

SUB-GRID MODEL

A collapsing molecular cloud forms structures that can
be several to many orders of magnitude smaller in size
than the original cloud. Large scale astrophysical sim-
ulations attempt to resolve these structures in order to
follow their evolution, but this requires overcoming ad-
ditional computational burdens, be it the reduced time
step needed to ensure numerical stability or resource de-
mands due to the increased memory requirements of the
computational domain. Sink particle methods have been
developed for both Lagrangian (Bate et al. 1995; Hub-
ber et al. 2013) and Eulerian mesh (Krumholz et al. 2004;
Federrath et al. 2010) codes to allow for collapsing flows
that proceed beyond the finest resolved scale of the sim-
ulation. Material that enters these sink particles can be
removed from the computational domain according to an
analytical prescription that is intended to best estimate
the physical processes that occur at those unresolved
scales. In this section, we develop an implementation
for embedding Lagrangian sink particles into an Eulerian
mesh to model the accretion of an ideally magnetized gas,
extending the approaches of Krumholz et al. (2004, 2006)
for non-magnetized flow. We review the criterion for the
creation of a sink particle in a magnetized medium and
we then determine the accretion rate of the sink parti-
cle, allowing for the finite resolution of the data. Only
these prescriptions depend on the strength of the local
magnetic field, whereas the others (sink particle mergers,
coupling the sink particle’s gravity to the hydrodynam-
ics, etc.) do not and so are left unchanged. It should be
borne in mind that, based on the observation that stars
have far less magnetic flux than the gas from which they

formed, we assume that the sink particles accrete mass
but not magnetic flux.

Sink Particle Creation

In simulations of gravitational collapse, mass accumu-
lates in a small fraction of the grid cells. Sink particle
algorithms must be able to identify whether these regions
would continue to collapse if they were afforded higher
resolution. On physical grounds, Jeans (1902) showed
that perturbations on scales larger than the Jeans length,

λJ =

(

πc2s
Gρ

)1/2

, (A1)

are unstable since thermal pressure cannot resist the self-
gravity of the gas. Truelove et al. (1997) showed that Eu-
lerian simulations are subject to purely numerical frag-
mentation if this Jeans scale is not resolved by at least
four cells. A sink particle is introduced at the center
of a cell when the cell mass density ρ exceeds a critical
density, which we term the Truelove-Jeans density,

ρTJ =
πJ2c2s
G∆x2

, (A2)

where J = ∆x/λJ is the (user-provided) inverse of the
number of cells required resolve the local Jeans length.
Once this is satisfied, a sink particle is initialized with
mass (ρ− ρTJ)∆x3, and an equal mass is removed from
the gas in the host cell. Myers et al. (2013) extended
this to incorporate ideal MHD, deriving a magnetic Tru-
elove criterion: sink particles are initialized in cells whose
density exceeds

ρTJ,mag = ρTJ (1 + 0.74/β) (A3)

(see their Appendix A). The additional term arises in
Equation (A3) because of the inclusion of magnetic pres-
sure, which also acts to prevent gravitational collapse.
Federrath et al. (2010) arrived at a similar condition. Fol-
lowing the work of Myers et al. (2013), we adopt J = 1/8
in our Truelove criterion for sink particle creation.

Sink Particle Accretion

Estimated Accretion Rate, Ṁfit

After the sink particle has formed, it will continue to
accrete nearby gas. The rate of accretion onto the sink
particle may be determined by processes that occur on
scales that cannot be resolved in many modeling appli-
cations of interest. Here we develop an expression for the
accretion rate onto sink particles that incorporates our
new interpolation formulas (Equations 27 and 30) and
that works at all resolutions. Our results for the accre-
tion rate are based on the assumption that the ambient
medium is uniform, but in simulations of star-forming
regions, the medium is far from uniform. We therefore
need an expression for the accretion rate that depends on
locally measured quantities. To obtain this, we ran the
models in this work and in Cunningham et al. (2012) at
a range of different resolutions and developed a prescrip-
tion for the correct accretion rate based on quantities
measured in the vicinity of the sink particle.
Two limits for the sink-particle accretion rate may be

considered: The well-resolved case, in which rABH is
much larger than the cell size, and the under-resolved
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case, in which it is much smaller. We need a prescrip-
tion for the accretion rate that works in these limits, as
well as in the intermediate case. Since rABH ∝ M∗, more
massive stars are likely to have accretion flows that are
well resolved, whereas low-mass stars are likely to have
under-resolved flows (see Section 5).
First consider the well-resolved case. In this case, the

exact prescription for how much mass gets removed from
the host and neighboring cells of the sink particle is not
important since the flow’s transition to velocities exceed-
ing the fast magnetosonic velocity, vF, is resolved. Once
v ≥ vF, the flow becomes causally disconnected from
the background and will collect near the sink particle re-
gardless of the conditions of the surrounding medium. If
our prescription underestimates the mass accretion rate,
gas will collect in the sink particle’s host cell until the
gas density exceeds ρTJ,mag, at which point a sink par-
ticle will be formed and immediately merged with the
existing sink particle (Krumholz et al. 2004). If our pre-
scription overestimates the accretion rate, the density in
the superfast infall will drop below the correct value, and
the accretion rate in the next time step will be reduced.
Thus, in the well-resolved case, the mass accretion rate
is effectively set by the supersonic infall. The work de-
scribed earlier in this paper using RAMSES is an example
of this regime, since we ensured that the length scale
rABH was resolved. The insensitivity to the accretion
rate algorithm is also true for simulations of global su-
personic collapse onto a particle (Shu 1977).
Next, consider the under-resolved regime, where rABH

is not well resolved. In this regime, the flow inside the
sink cell is causally connected to the rest of the flow for
v0 < vF (the subfast case) and to the flow in the down-
stream Mach cone for v0 > vF (the superfast case). The
prescription for the amount of gas to be taken from the
particle’s host cell is important in this regime: not all the
gas that flows through the cell should necessarily accrete
onto the sink particle. Furthermore, the amount of gas in
the particle’s host cell determines the pressure support in
the cell. The correct accretion rate in this regime is the
Alfvén-Bondi-Hoyle rate that we have determined. The
problem is that this accretion rate depends on the prop-
erties of the ambient medium, which we have assumed is
homogeneous; in a simulation of a star-forming region,
however, there is no homogeneous ambient medium. We
therefore must estimate the accretion rate from the val-
ues of the parameters in the vicinity of the sink particle.
Star-forming regions are supersonically turbulent, and
Krumholz et al. (2006) showed that such turbulence has
two countervailing effects on the accretion rate: the rate
is increased by the density fluctuations, but decreased
by the vorticity in the flow. Our simulations include the
first effect so long as density variations are well-resolved
(i.e., except in shocks). We have not included vorticity,
however, so our results are necessarily approximate when
applied to a turbulent medium.
The results we have obtained for the accretion rate de-

pend on quantities—the ambient density, ρ, the ambient
plasma β, the Mach number of the flow past the ac-
cretor, M, and the angle between the flow velocity and
the field, θ—that are assumed to be constant far from
the accreting particle. In star-forming regions, however,
these quantities are not constant far from the accretor.
To deal with this problem in simulations, we have devel-

oped a two-step procedure: We first measure these quan-
tities near the accretor; these values are denoted with a
bar (e.g., ρ̄). In the limit of low-resolution, these values
can be used for the ambient values that appear in our
results for the accretion rate in Section 2.2. However,
when the flow is resolved, gravitational focusing ampli-
fies the density and magnetic field near the accretor, and
values of these quantities must be extrapolated in order
to estimate the ambient values; these estimates for the
ambient values are denoted by a dagger (e.g., ρ†). We
do not distinguish the local and extrapolated values of
the Mach number of the flow relative to the sink particle
since they are the same in the limit of steady accretion
(i.e., M† ≃ M̄).
In general, the angle θ between v and B may be time-

dependent, so it is not possible to infer the ambient value
of θ by extrapolation; we therefore set θ† = θ̄. With
Equations (27) and (30) for Ṁ‖ and Ṁ⊥, our estimate of
mass accretion rate onto a sink particle is then

Ṁfit = Ṁ⊥(ρ
†, β†,M̄) sin2 θ̄ + Ṁ‖(ρ

†, β†,M̄) cos2 θ̄ .
(A4)

In order to compute local values of the quantities
ρ̄, β̄, M̄, and θ̄, we take averages over all the cells in
a spherical shell of radius ravg ± ∆x around the sink
particle, where ∆x is the smallest grid size of the com-
putational domain. The shell radius must be larger than
4∆x, the region from which mass is removed from the
cells and deposited onto the particle (Krumholz et al.
2004), but not so large that the sink particle is sampling
far from the local region that sets its current accretion
rate. We have found the best results by sampling over a
shell with radius ravg = 11∆x. In particular, the value
of M̄ is computed as a mass-average over the volume of
the shell, and θ̄ is the angle between the volume-averaged
magnetic field and volume-averaged momentum direc-
tions within this shell. We have found the best results by
imposing the refinement criterion that every AMR level
cover a sphere with a radius of 16 zones centered on the
sink particle.
As noted above, if the flow near the sink is well

resolved—i.e., if ravg < rAB, rBH—then the density and
magnetic field will be amplified by gravitational focusing,
so that ρ̄ > ρ† and B̄ > B†. First consider the density.
Following Krumholz et al. (2004), we determine ρ† by
assuming that the density near the sink particle is well
approximated by the stationary Bondi (1952) solution,
ρ(r) = ρ†α(r/rB), where the function α is determined by
a set of transcendental equations. We evaluate this func-
tion at ravg, so that ρ(ravg) = ρ̄. To incorporate relative
motion between the sink particle and the gas, we instead
normalize the radius in α to rBH (Krumholz et al. 2004),
giving

ρ̄ = ρ†α(ravg/rBH) . (A5)

The function α(r) is a monotonically decreasing func-
tion with the limit α → 1 as r → ∞. In Figure
13 we plot α(r/rBH). In the absence of a magnetic
field, our estimate for the ambient density would be
ρ† = ρ̄/α(ravg/rBH). Since the magnetic field limits the
compression, we adopt an ansatz for the ambient den-
sity in which ρ† = ρ̄α−χ, where χ goes smoothly from
1 in the hydrodynamic limit to 0 (i.e., no compression)
in the limit of a strong field; an explicit expression for χ
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Fig. 13.— Density profile from Krumholz et al. (2004) for steady-
state Bondi accretion onto a point source as a function of distance
from the source r. The density is normalized to ρ† = ρ(r → ∞).

as a function of β† will be given below. At sufficiently
high resolution, directly simulating the accretion onto a
totally absorbing sphere is more precise than our accre-
tion rate fits. We have found that this condition is met
when ∆x <∼ rABH/8. A resolution-dependent, piecewise
prescription for the argument of α−χ is necessary to give
a precise accretion rate in the limit of an asymptotically
converged grid resolution, regardless of the error of our
approximate fit.
Whatever the functional form for α−χ, it has several

requirements. In order to have the sink particle transi-
tion to a totally absorbing sphere in the high-resolution
limit, the value of ρ† should be similar to the near-sink
value of ρ̄— i.e., α−χ should be of order unity. For
under-resolved flows, ravg is sampled farther from the
sink particle. In the weak field limit, α−χ should ap-
proach 1/α(ravg/rBH), which gives an accurate correc-
tion factor between ρ† and ρ̄ (Krumholz et al. 2004). As
β decreases, the value of α−χ should decrease until the
field becomes so strong that any gravitational enhance-
ment of ρ occurs well within ravg. For smaller values of
β, α−χ should rise back up to be of order unity. We
adopt

ρ† = ρ̄

(

α

[

max

(

1,
8∆x

rABH

)

11rABH

8rBH

])−χ

(A6)

as our functional form for ρ†, which we later show
achieves all the requirements above. Note that the fac-
tor 11/8 does not have any special significance; it is the
result of our choice of ravg = 11∆x and our result that
the criterion for being well resolved is ∆x < rABH/8.
The magnetic field is also amplified in the accretion

flow. For 1D compressions, B ∝ ρ so that β ∝ ρ/B2 ∝
1/ρ. The accretion flow is far more complicated than
that, but we use this simple relation as the basis for our
ansatz for β. Guided by this asymptotic consideration,
we choose the following ansatz for β†:

β† = β̄

[

α

(

11∆x

rBH

)]χ

. (A7)

For the length scales rBH and rABH, the input quan-
tity β† is used in the expressions given by Equations (8)
and (23), so Equation (A7) an implicit function for β†.
Note that, in contrast to the prescription for ρ†, the pre-
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Plasma Beta    β
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100

α
−χ

8∆x≤ rABH

M= 5.0
2.5
1.0
0.0

Fig. 14.— The value of α−χ from Equation (A6) for high resolu-
tion (8∆x ≤ rABH). Four different Mach numbers are considered,
increasing from bottom to top. The function for χ(β) is given in
Equation (A8). For low resolution flows (8∆x ≥ rABH), α−χ is
a monotonically decreasing function as ∆x decreases. Therefore,
these curves also give the minimum value of α−χ for a particular
β and M in the low resolution limit.

scription for β† does not require an explicit piecewise
transition with resolution: the piecewise prescription for
ρ† transitions our estimate to a totally absorbing sphere
in the limit of high resolution, and by definition this is
insensitive to the field strength.
It remains to give an expression for χ(β†). We

construct this function so that the functional form of
the density profile (Equation A6) best reproduces the
azimuthally-averaged steady state density profiles in
Cunningham et al. (2012). The functions are fit to the
profile in the equatorial plane, defined as the plane per-
pendicular to the original magnetic field direction that
also goes through the center of the sink particle. After
some experimentation, we obtained a reasonably good fit
with

χ(β†) =







0 : log10 β
† < −3.1,

1.27− 0.5/(β†)
0.13

: −3.1 ≤ log10 β
† ≤ 2.0,

1 : log10 β
† > 2.0.

(A8)
This function is a monotonically increasing function of
β†. With this final parameter specified, Equations (A7)
and (A8) are solved simultaneously by iteration until β†

converges to one part in 104 or until β† > 109. At this
point, the four inputs ρ†, β†, M̄, and θ̄ are known and
Ṁfit can be determined.
We now show that this formulation satisfies the cri-

teria given above. First, in the high-resolution limit,
the sink should become totally absorbing, which requires
that α−χ be of order unity. In this case, the argument of
α is 11rABH/(8rBH), so that α−χ → [α(11/8)]−1 ≃ 1/2
in the high-β limit. In the low-β limit, χ → 0, so that
α−χ → 1. For intermediate values of β, α depends on
both β and M as shown in Figure 14. The smallest value
of α−χ occurs for M = 0; it is 0.064 at β = 0.022.
Next, for under-resolved flows (∆x > rABH/8), α is

evaluated at ravg/rBH = 11∆x/rBH and is resolution de-
pendent. We argued that in the weak-field limit, α−χ

should approach [α(ravg/rBH)]
−1; this occurs naturally,

since χ → 1 in this limit. In the strong-field limit,
we required α−χ ≃ 1; this is satisfied since χ → 0 in
this limit. At intermediate values of β, we suggested
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that α−χ should have a minimum. Although we have
not portrayed α−χ for different values of ∆x in Figure
14, this figure does show the expected minimum when
∆x is at the boundary between low and high resolution
(∆x = rABH/8). As one moves into the low-resolution
regime (increasing ∆x), the argument of α increases and
so does α−χ. As a result, the values of α−χ for the high-
resolution case in Figure 14 provide a lower bound for
the values in the low-resolution case.

The Adjusted Accretion Rate, Ṁsink: Capping the Alfvén
Velocity

With Ṁfit given by the prescription above, mass is ex-
tracted from a sink region within 4∆x of the particle
as an operator-split source term that is applied every
fine AMR level time step increment ∆t. In well-resolved
accretion flows care must be taken in extracting mass
from the grid. In such cases we do not want to intro-
duce a new local maximum in the speed of magnetosonic
waves—similar to what was described in Section 3. In
the opposite case of poorly-resolved accretion flow (e.g
when rABH is not resolved) not introducing a new max-
imum in the value of vA, could arbitrarily diminish the
accretion rate onto the sink particle. We therefore define
a characteristic square-velocity V 2 as the maximum of
two quantities, depending on whether rABH is resolved
(rABH < ∆x) or not (rABH ≥ ∆x):

V 2 = max







v̄ 2
A,max : rABH < ∆x

v̄ 2
A,max∆x2

r2ABH

: rABH ≥ ∆x
. (A9)

The value for v̄ 2
A,max is computed by taking the max-

imum Alfvén speed inside the same spherical shell de-
scribed above. This defines the ∆ρ that can be ex-
tracted while only introducing a new local maximum in
the Alfvén speed when rABH is not resolved and avoid-
ing vanishing time-step pathologies when it is resolved.
The value of ∆ρ extracted from a particular cell near
the sink particle is set to the minimum of two quanti-
ties while holding the specific kinetic energy of the gas
constant:

∆ρ = min



























(Ṁfit∆t/∆x3)W (r) : Mass accretion
estimated from

fit.
ρ−B2/(4πV 2) : New maximum

Alfvén velocity
avoided.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

(A10)
where r is the distance of that cell’s center from the
sink particle and the function W (r) is a Gaussian ker-
nel that extends out to r = 4∆x and is normalized to
unity (Krumholz et al. 2004). Note that the second ex-
pression for ∆ρ is non-negative by definition. These two
measures in the piecewise definition of ∆ρ are guided
by physical considerations. However, if the sink parti-
cle accretes faster than the background flow can supply
material, a void will open around the sink particle. If
the density contrast between the void and the surround-
ings is allowed to become arbitrarily deep, the stability of
the hydrodynamic scheme could be adversely impacted.

This is particularly true in the limit of β → ∞, where our
Alfvén cap would not prevent this pathology. Therefore,
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Fig. 15.— Test of the magnetized sink particle algorithm imple-
mented in ORION2 . Plotted for each model is the ratio of steady-
state accretion rates of ORION2 (Ṁsink) and RAMSES (ṀRams) as a
function of the smallest grid cell size ∆x. Black points show the
parallel orientation runs, green shows perpendicular. The Mach
number of the run is given by the symbol.

we further impose the constraint that if the ∆ρ results in
a particular cell having density less than ρ†/10, then ∆ρ
is adjusted so that the cell’s density is floored at ρ†/10.
Finally, mass and momentum that is extracted from the
grid is added to the sink particle mass in a manner than
preserves global mass conservation,

∆Msink =
∑

r≤ 4∆x

∆ρ∆x3 , (A11)

and the momentum of the sink particle is updated in a
likewise manner that preserves global momentum conser-
vation.

Verifying the Algorithm for the Accretion Rate

We have implemented this MHD sink particle algo-
rithm in the ORION2 code (Li et al. 2012). To test the
method, we repeat the models of this work and Cunning-
ham et al. (2012) on geometrically nested meshes having
a base grid over 16rB of at least 643 and enough AMR
levels so that we coarsely resolve the accretion scales to
be rB/∆x = 2, 8, 32, and 64 on the finest level. In
Figure 15 we show the comparison between the ORION2

results and those from RAMSES . In general, we achieve
accretion rates that are typically within a factor of two
of the result obtained from high-resolution RAMSES mod-
els. In Figure 16 we show the convergence properties in
ORION2 of a M = 1.41, β = 1 model with a parallel field
orientation. The parameters of this test case were chosen
so that magnetic, thermal and ram pressure effects are
all of comparable importance and that the influence of all
of these effects on Ṁ converge with sufficient resolution.
Note that at low resolution, the accretion rate is ∼ 40%
low and that the method transitions toward a pressure-
less totally absorbing sphere by rB/∆x > 64, converging
at high resolution to within 11% of the RAMSES model.
The ∼ 11% difference when ORION2 is at comparable or
higher resolution reflects intrinsic differences in the codes
when resolving flows with a finite resolution.
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Fig. 16.— Convergence study of the ORION2 implementation as a
function of the number of grid cells per rB. Plotted is the ratio of
steady state accretion rates of ORION2 versus RAMSES (ṀRams) for
the M = 1.41, β = 1.0 parallel case. For comparison, the default
resolution RAMSES model had rB/∆x ≈ 164, marked by the short
dashed line.
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